Generalized Christoffel–Darboux formula for classical skew-orthogonal polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Coherent States for Classical Orthogonal Polynomials

For the oscillator-like systems, connected with the Laguerre, Legendre and Chebyshev polynomials coherent states of Glauber-Barut-Girardello type are defined. The suggested construction can be applied to each system of orthogonal polynomials including classical ones as well as deformed ones.

متن کامل

99 Classical skew orthogonal polynomials and random matrices

Skew orthogonal polynomials arise in the calculation of the n-point distribution function for the eigenvalues of ensembles of random matrices with orthogonal or symplectic symmetry. In particular, the distribution functions are completely determined by a certain sum involving the skew orthogonal polynomials. In the cases that the eigenvalue probability density function involves a classical weig...

متن کامل

On the Christoffel–darboux Formula for Generalized Matrix Orthogonal Polynomials

We obtain an extension of the Christoffel–Darboux formula for matrix orthogonal polynomials with a generalized Hankel symmetry, including the Adler-van Moerbeke generalized orthogonal polynomials.

متن کامل

Q-Hermite Polynomials and Classical Orthogonal Polynomials

We use generating functions to express orthogonality relations in the form of q-beta integrals. The integrand of such a q-beta integral is then used as a weight function for a new set of orthogonal or biorthogonal functions. This method is applied to the continuous q-Hermite polynomials, the Al-Salam-Carlitz polynomials, and the polynomials of Szegő and leads naturally to the Al-Salam-Chihara p...

متن کامل

Classical Orthogonal Polynomials as Moments

We show that the Meixner, Pollaczek, Meixner-Pollaczek and Al-Salam-Chihara polynomials, in certain normalization, are moments of probability measures. We use this fact to derive bilinear and multilinear generating functions for some of these polynomials. We also comment on the corresponding formulas for the Charlier, Hermite and Laguerre polynomials. Running Title: Generating Functions

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2008

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/41/43/435204